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Abstract—The use of biometrics to authenticate users and 
control access to secure areas has become extremely popular in 
recent years, and biometric access control systems are frequently 
used by both governments and private corporations. However, 
these systems may represent risks to security when deployed 
without considering the possibility of biometric presentation 
attacks (also known as spoofing). Presentation attacks are a 
serious threat because they do not require significant time, 
expense, or skill to carry out while remaining effective against 
many biometric systems in use today. This research compares two 
deep learning-based methods and one texture-based method for 
facial and iris presentation attack detection on baseline datasets. 
The first deep learning method uses Inception-v3, a pre-trained 
deep Convolutional Neural Network (CNN) made by Google for 
the ImageNet challenge, which is retrained for this problem. The 
second deep learning method uses a shallow CNN based on a 
modified Spoofnet architecture, which is trained normally. These 
CNN-based approaches are compared with a traditional texture-
based method using Local Binary Patterns (LBP). The datasets 
used are the ATVS-FIr dataset, which contains real and fake iris 
images, and the CASIA Face Anti-Spoofing Dataset, which 
contains real images as well as warped photo, cut photo, and video 
replay presentation attacks. We also present a third set of results, 
based on cropped versions of the CASIA images. 

Keywords—biometrics, presentation attack, deep learning, CNN, 
LBP. 

I. INTRODUCTION 
Researchers have studied ways to measure and differentiate 

between different palm prints, gaits, voices, fingerprints, irises, 
faces, and other biometric identifiers. All are interesting and 
effective ways to verify an identity, although the research 

reported here examines only iris and facial biometrics. Through 
a variety of methods, it has become possible for a computer 
system to scan and analyze a face or iris and then grant access 
based on whether that biometric is recognized. 

Biometric-based presentation attacks involve gaining access 
to a biometric sample from databases or external resources, then 
reusing that biometric to gain unauthorized access to 
confidential data or secure facilities. Though the use of 
biometric authentication strengthens security through unique 
features, the cloning of the biometric sample and the associated 
unique features to access a biometric system illegally is feasible. 

Though face and iris recognition are more reliable 
biometrics, spoofing has still become a common threat for these 
biometrics. There are multiple ways an attacker can spoof a 
biometric system. High-resolution copies of biometric samples 
have been used to spoof systems. Photorealistic face masks and 
synthetic images have also been used successfully in 
presentation attacks. Digital retouching of images is also a 
common spoofing threat [1]. Face and iris spoofing can be 
categorized as texture-based spoofing, motion-based spoofing, 
3D shape-based spoofing, and multi-spectral reflectance-based 
spoofing [2]. 

II. RELATED WORK 
We investigate several forms of presentation attack detection 

that use machine-learning methods, including Convolutional 
Neural Networks (CNNs), deep belief networks, and micro 
texture analysis [3, 4, 5, 6]. We also examine techniques for the 
more general problem of facial recognition and classification 
that are useful for our research [7, 8]. 

This research is based upon work supported by the National Science 
Foundation (grant numbers CNS-1460864 and DUE-1504918) and the Army 
Research Office (contract number W911NF-15-1-0524). 
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Deep learning techniques to mitigate presentation attacks
have shown promising results [1, 2, 5]. Menotti et. al. propose 
building an anti-spoofing system using a CNN with a 
combination of two approaches [5]. The first approach focuses 
on learning an appropriate CNN architecture. The second 
approach consists of learning filter weights via the standard 
backpropagation algorithm [9, 10]. Yang et. al. [2] and Zhang 
et. al. [11] propose diverse spoofing attack prevention 
techniques including face localization, spatial augmentation, 
and temporal augmentation in combination with canonical CNN 
filtering techniques for feature training and classification. CNNs 
are the primary focus of this research. 

Silva et al. use a deep belief network in order to detect 
whether a user is wearing contact lenses [12]. They define a 
three-class detection problem by dividing the images based on 
the presence of soft (uncolored) contact lenses, colored contact 
lenses, and no contact lenses. They use a combination of a CNN 
for deep image representations and a fully connected three-layer 
network for classification. Instead of using a specific search 
algorithm, the researchers analyzed a set of parameters to build 
the final network topology and to learn the filter weights by 
backpropagation. They have also suggested future work with 
random weights. On certain datasets, their methods outperform 
state-of-the-art approaches. However, their current approach 
does not segment the iris, and this becomes a problem in datasets 
where the iris region is not pre-identified. 

Farfade, Saberian, and Li investigate facial recognition for 
partially obscured faces and faces at an angle [13]. Using a 
specific CNN called Deep Dense Face Detector (DDFD), the 
authors create a system that can recognize facial features without 
the entire face being visible. They specifically were interested in 
creating a single model that could recognize faces despite a 
variety of obstructions, such as rotated faces, skewed faces or 
faces in profile, partially obscured faces, and others. DDFD does 
not require landmark annotation, meaning it does not 
specifically pick out images of eyes, noses, and other significant 
facial features. Instead, the authors used a dataset of 21,000 
unaltered and altered images featuring partially obscured human 
faces in order to train the CNN. Altered images involved 
sampling the dataset and randomly cropping certain images in 
order to represent an obscured face. By training the CNN to 
recognize cropped images, DDFD could recognize faces in a 
variety of situations. DDFD used five convolutional and three 
fully connected layers and produced classification results 
comparable with state-of-the-art results in other published work. 

Garcia and Delakis focus primarily on facial recognition 
with images that have been captured in non-controlled 
environments [14]. These images are of variable size, quality, 
and rotation. The authors used a dataset created from images 
from the internet and scanned newspapers to create a CNN 
called the Convolutional Face Finder (CFF) specifically for their 
work. When processing images, CFF classifies various local 
features such as end-points or edges, combines them in later 
layers to identify larger features such as noses or eyes, and then 
measures the feature’s distance relative to other features to
recognize a face. 

Yang, Lei, and Li are perhaps the first to suggest using a 
CNN to differentiate between real and spoofed faces [2]. They 

crop the CASIA and Replay-Attack dataset images to five
different sizes in order to determine the influence of the 
background in presentation attack detection. Their best result is 
with the second-largest size, possibly because the largest size 
results in overfitting. Their research shows that the background 
can be useful in certain image identification problems, and that 
CNNs are an effective solution for presentation attack detection. 

Li et al. also propose the use of a CNN in presentation attack 
detection [15]. They retrained the VGG-face model created by 
the Oxford Visual Geometry Group (VGG) on the CASIA and 
Replay-Attack datasets. Their approach has reasonable 
performance in comparison with previous work on CASIA and 
Replay-Attack. 

Microtexture analysis has also proven to be effective not 
only with identifying faces but also with detecting a presentation 
attack. Multiple microtexture analysis techniques in order to 
identify texture differences between a real face and a spoofing 
attempt, with Local Binary Patterns (LBPs) performing most 
effectively on a dataset of real and printed photos [16, 17]. 
Chingsokva et al. [18] extend this work and test LBP variants on 
a custom dataset (Replay-Attack) that includes multiple 
presentation attack methods. The methods involved include a 
print photo attack, a mobile attack (a photo taken with a mobile 
phone is displayed to the sensor), and a high definition attack (a 
photo taken with a high-quality tablet is displayed to the sensor.) 
It proves that a basic LBP technique produces the most accurate 
results, achieving stronger results, possibly due to the 
differences in datasets.  

Farfade et.al. [13] as well as Garcia et.al [14], do not directly 
investigate presentation attack detection. However, their 
respective work on detecting obscured faces and faces in non-
ideal environments is a necessary condition for presentation 
attack detection. These attacks may be carried out in poor 
lighting or with partially obscured faces, so any presentation 
attack detection technique designed for the real world use must 
be able to operate effectively under these conditions. The 
research by Silva et al. on contact lens detection is similarly 
applicable to detecting iris presentation attacks that use textured 
contact lenses. Finally, the research by Menotti et al. [5] and 
Yang et. al. [2] helped inform our decision to use CNNs and to 
test cropped versions of the CASIA images. 

III. THEORETICAL BACKGROUND 
Presentation attack detection algorithms are classified as 

either hardware-based or software-based methods. We 
investigate software-based methods, which are cheaper since 
they do not require specific hardware and tend to be more user-
friendly since they do not require a challenge-response [16]. 
Software-based methods can be divided into additional 
subclasses, such as dynamic methods that use temporal 
information (e.g., videos) or static methods that do not (e.g., still 
images). We use only software-based static methods for still 
images. Techniques examined include a texture-based approach 
using LBPs and a machine learning-based approach using 
CNNs. 

Texture-based approaches in image analysis use 
microtextural data in order to determine characteristics of the 
images provided. LBP is a texture classification technique that 
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compares a single pixel with its eight neighboring pixels [17].
Moving in a circle around the center pixel, LBP compares the 
brightness of the center pixel with each neighbor, determining 
whether the neighbor has a larger (brighter) or smaller (darker) 
value than the center pixel. If the neighbor is brighter than the 
center cell, it is assigned a value of one. If it is equally bright or 
darker than the center pixel, it is assigned a value of zero. These 
values are then converted into a histogram. After performing this 
process for a series of pixels, the histograms are combined to 
produce a feature vector. Finally, this feature vector is used to 
classify the image. LBP has proven to be effective in image 
classification and facial recognition, and it can be applied to 
presentation attack detection due to microtextural differences 
between real human faces and printed photos or iPad screens 
used for spoofing [18]. 

CNNs are a heavily modified form of traditional neural 
networks designed for image recognition. Traditional neural 
networks are made out of a number of different layers. Each 
neuron in a layer receives input signals from all the previous 
layer’s neurons and transmits an output signal to all the next 
layer’s neurons if and only if the input signal strengths exceed 
some threshold. Because each neuron in a layer is fully 
connected to every neuron in the previous layer, the number of 
connections grows rapidly with the number of layers in the 
network as well as the number of neurons in each layer. 

In practice, traditional neural networks support a very 
limited number of layers, require large amounts of training data 
even for small networks, and have high hardware requirements 
and performance costs [4]. Since they do not scale effectively, it 
is difficult to use them for image recognition and other problems 
with complex input domains. 

CNNs differ from traditional neural networks in that neurons 
in each layer are not fully connected to all the previous layer’s
neurons. This is because not every pixel in an image is related 
to every other – for example, background pixels are not related 
to pixels of a subject’s face [4]. By removing unnecessary
connections between neurons, the size and complexity of the 
network is reduced, allowing CNNs to have more layers and 
achieve better results on image recognition problems. They also 
become desensitized to minor variations in the input image. 
Because of these factors, they are especially efficient tools for 
facial recognition and classification. 

Finally, we explore a technique called transfer learning. 
Transfer learning involves the reuse of a neural network that has 
already been trained by other researchers on a different problem. 
Normal training involves initializing the neuron weights to some 
value, and then updating them to achieve better accuracies using 
backpropagation. In transfer learning, a neural net trained on one 
problem (e.g., facial recognition) is retrained on a new, similar 
problem (e.g., facial presentation attack detection). Since the 
two problems are similar, the neural network does not need to 
be fully trained on the new problem and can reuse what it learned 
on the original problem. To achieve this reuse of parameters, 
most of the layers have their weights held constant, and only a 
few layers have their weights updated. This greatly reduces the 
time and amount of data required to train the neural network, 
although the accuracy suffers slightly since the two problems are 

not exactly the same. For larger CNNs, transfer learning can
reduce the training time from several weeks to several hours. 

IV. RESEARCH OVERVIEW 
As there is no baseline dataset or analysis technique for 

presentation attack detection methods, it can be difficult to 
properly determine the mose effective methods. We have chosen 
to compare the strength of multiple techniques. The techniques 
to compare have been chosen based on their effectiveness 
reported in the papers that have proposed and tested them. Our 
work will measure the effectiveness of LBP, a shallow CNN, 
and a deep CNN on cropped and uncropped images. We design 
and implement a shallow CNN that successfully classifies real 
and spoofed faces and irises. We then compare the accuracy of 
our fully trained CNN against a pre-trained Inception-v3 
instance that is retrained for this problem. Inception-v3 is a deep 
CNN designed by Google and trained on the ImageNet dataset 
[19]. 

Our goal is to examine the accuracy of a shallow CNN 
architecture versus a deep CNN architecture and determine the 
ratio between accuracy, performance, and complexity. Our CNN 
is a modified version of the Spoofnet architecture with six layers 
whereas the Inception-v3 model has 48. We also compare the 
effectiveness of ordinary training versus transfer learning for 
presentation attack detection. 

Next, we use LBP to detect presentation attacks, and 
compare this texture-based method with the above deep-
learning methods. LBP was chosen as a comparison technique 
because it is generally an effective method for classifying 
multiple kinds of presentation attacks [16]. Since LBP is both 
highly accurate and based on a different methodology than deep 
learning [20], it serves as a useful benchmark for our 
comparison. 

By using both cropped and uncropped images, we may 
compare the accuracy of the different tools when background 
information is both present and absent [21, 22]. Cropping 
theoretically should not affect the texture-based methods but 
will likely affect the CNNs due to the loss of background 
information. In previous work, it has been shown that CNNs 
struggle with over-cropped images but perform best when some 
cropping is done to prevent overfitting [2, 23, 24]. 

We use multiple datasets with multiple forms of image 
recognition in order to compare the relative performance of 
these methods. The results of this work can inform future 
researchers about the effectiveness of different techniques for 
presentation attack detection. 

V. CNN ARCHITECTURE 
Generally, a CNN architecture is formed by a stack of 

discrete layers [4]. It transforms the input volume into an output 
volume through a differentiable function [4]. Inspired by the 
Spoofnet architecture used in [5], we designed our own CNN 
architecture. The first layer in our CNN is a convolutional layer 
with a 5x5 kernel, 16 filters, and ReLU activation. Next, there is 
a max-pooling layer with a 3x3 pooling window and a stride of 
three. The third layer is convolutional and is identical to the first 
except for having 32 filters. This is followed by a second max-
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pooling layer that is identical to the first. We flatten the output
of this layer before feeding it to a dense layer with 128 neurons 
and ReLU activation. Finally, there is a dense layer with one 
neuron and sigmoid activation. We use binary cross-entropy as 
the loss function, a learning rate of 0.001, and the Adam 
optimizer. Fig. 1 shows the major features of our CNN 
architecture. 

VI. DATASETS 
We report results for three datasets: ATVS, CASIA, and 

CASIA-cropped. ATVS is an iris image dataset that contains 
fifty subjects [21, 22]. Subjects had each eye photographed four 
times in each of two different sessions. Each image was then 
printed and rescanned at a reduced quality to create the spoofed 
iris images. There are a total of 1600 images, with 32  per user 
and 800 per class (real and fake). Each image is a grayscale 
640x480 BMP file that we converted to JPG. 

CASIA is a face video dataset containing fifty subjects [11]. 
Within each class, a subject has one low-resolution landscape-
style video, one low-resolution portrait-style video, and one 
high-resolution portrait-style video that are approximately ten 
seconds long. The four classes are real subjects, “warped photo”
presentation attacks (printed photo of the subject held up to the 
camera with the photo moved back and forth to fool liveness 
detection systems), “cut photo” attacks (printed photo of the 
subject with eyeholes cut out and the real user positioned behind 
the photo to fool blinking detection systems), and video replay 
attacks (tablet or screen held up to the camera while playing a 
video of subject). 

We converted each MP4 video to a series of still JPGs, with 
one image per frame of video. Not all videos are the same length, 
and therefore not every class has the same number of images. 
Some (but not all) high-resolution videos had an initial black 
frame, which was discarded. The low-resolution images are 
640x480 (landscape style) and 480x640 (portrait style). The 
high-resolution images are 720x1280 (portrait style). In total, 
there are approximately 111,000 color images after these 
transformations, with 20,000 to 30,000 per class. 

CASIA-cropped is a custom dataset that we created based on 
modified versions of the CASIA images. We used pretrained 
OpenCV Haar cascades [25] to detect and crop the face region 
for every subject image in the CASIA dataset. Images without a 
detected face region, or with more than one detected face region, 

were discarded. We then cropped the resulting images a second
time to ensure all images were the same size (140x140). There 
are approximately 94,000 color images in this dataset, with 
22,000 to 26,000 per class. Cropping the images creates a more 
challenging problem for the classifier since a CNN can no longer 
learn information about the background region to detect 
spoofing. In the standard CASIA dataset, for example, a CNN 
may detect presentation attacks by locating the edges of a photo 
or tablet held up to the camera. In CASIA-cropped, this is no 
longer possible, and the neural net must learn other, less obvious 
features to detect spoofing. This helps to create a more robust 
spoofing detection system that will generalize better to new 
types of attacks. For example, a photorealistic mask would not 
have well-defined edges and might fool systems that use edge 
detection to classify attacks. 

VII. METHODOLOGY 
Inception-v3, originally trained by Google on the ImageNet 

dataset, is retrained on these datasets for 4000 epochs and uses 
an 80%/10%/10% training/testing/validation split. It does not 
require that input images be the same size, and it loads the full 
contents of every dataset in batches. 

Our custom CNN is trained normally for 30 epochs, uses a 
50%/50% training/testing split, and uses the first 30 testing 
images as a validation set. Unlike Inception-v3, it requires that 
all input images be the same size. Note that our CNN code can 
load the full ATVS dataset due to its smaller size but cannot load 
the larger CASIA and CASIA-cropped datasets. This is because 
it must load the entire dataset at once instead of in batches like 
Inception-v3. We therefore load 800 640x480 images per class 
for CASIA and 800 140x140 images per class for CASIA-
cropped. The number of images per class, and the image size 
used for CASIA, were chosen to match ATVS. Although our 
CNN obtains reasonable accuracy when it converges, it fails to 
find a gradient about one-third of the time. 

In this research, we generate ROC curves for our custom 
CNN and for binary classification problems. We place all 
warped photo attack, cut photo attack, and video replay attack 
images into a single “fake” class, which is compared with the
existing “real” class. 

Our LBP code also requires that all input images be the same 
size but is able to load all images of that size instead of only 800 
per class. We load all 640x480 images for CASIA and all 
140x140 images for CASIA-cropped. We report the smallest 
number of patches that achieves the highest accuracy. 

VIII.  RESULTS AND DISCUSSION 
Our results are shown in Table 1. The spoofed ATVS images 

are quite simple and are easily detected by all methods. The 
CASIA images are more complex, and although our CNN 
performs well on the regular images, the cropped images force 
our CNN to guess randomly for the full four-class problem. 
Binary classification on CASIA-cropped is simpler, and our 
CNN does much better on that problem due to its reduced 
dimensionality. LBP and Inception-v3 both perform extremely 
well regardless of the image size or dataset used. 

Fig. 1. CNN architecture and layer features. 
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TABLE 1 RESULTS MATRIX FOR INDIVIDUAL TOOLS AND DATASETS. 

Methods Used ATVS CASIA CASIA-
cropped 

Inception-v3 100% R/F 98.7% 
W/C/V/R 

90.2% 
W/C/V/R 

Modified 
Spoofnet 97% R/F 

90.5% 
W/C/V/R 25% W/C/V/R 

92.5% R/F 94.5% R/F 

LBP 100% R/F 
(1x1 patch) 

100% 
W/C/V/R 

(1x1 patch) 

100% 
W/C/V/R 

(1x1 patch) 
a. W: Warped photo, C: Cut photo, V: Video presentation attacks. R: Real images. Original 

CASIA four-class problem. 

b. R: Real images. F: Fake images. For CASIA and CASIA-cropped, “Fake” includes all warped
photo, cut photo, and video replay attack images). 

 

The ROC curves (Figs. 2-4) show the True Positive Rate 
(TPR, solid line) versus the False Positive Rate (FPR, dashed 
line) for our CNN on the ATVS, CASIA, and CASIA-cropped 
datasets. The TPR should be as close to 1.0 as possible, meaning 
that all legitimate users were accepted and none were rejected 
by mistake. The FPR should be as close to 0.0 as possible, 
meaning that all presentation attacks were rejected and none 
were mistakenly accepted as real users. In all cases, the area 
under the curve remains at 0.98, which is extremely close to the 
ideal value of 1.0. 

Our custom CNN performs best on ATVS, which is a simple 
binary classification problem. Our CNN also achieves good 
results on CASIA. However, it is forced to guess randomly when 
classifying CASIA-cropped (25% accuracy with four classes). 
We hypothesize that this is due to its small number of layers. It 
can learn simple features (such as the edge of a photo or tablet) 
very easily and does well on CASIA, where those features are 
present. On CASIA-cropped, the accuracy suffers because these 
features are not present. Compensating by learning more 
complex features is not possible for this very simple CNN. 

On the simpler binary CASIA problem, our custom CNN is 
able to achieve much better accuracies. We believe that the 

differences between real images and spoofed images are very 
simple and therefore easy for a simple CNN to learn. 
Distinguishing between different types of attacks, however, is 

more complex since the different attack images are very similar 
(e.g., both warped photo and cut photo attacks involve a printed 
photo held up to a camera). Learning the difference between 
these very similar classes requires a more complex CNN with 
more layers, such as Inception-v3. 

We believe Inception-v3’s reduced performance on CASIA-
cropped is also due to the loss of obvious features such as photo 
edges. Inception-v3 is nonetheless able to compensate for the 
loss of information due to its large number of layers. The extra 
complexity allows it to learn more abstract features. Possible 
candidates include texture-based features such as albedo (AKA 
reflectivity). 

Finally, we believe that LBP’s excellent performance is due
to the same textural features. All presentation attack images have 
the common characteristic of being printed on paper or 
displayed on a screen. The microtextural differences between 
these surfaces and human faces have been previously reported, 
and LBP is known to perform well on presentation attack 

detection [18]. We would be interested to see whether LBP 

 

Fig. 4. ROC curve for our CNN on the binary CASIA-cropped real/fake 
problem. 

 

Fig. 3. ROC curve for our CNN on the binary CASIA real/fake problem. 

 

Fig. 2. ROC curve for our CNN on ATVS. 
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performs similarly well with photorealistic masks or textured
contact lenses used in spoofing. 

IX. CONCLUSION 
Through this work, we provide a baseline dataset and 

analysis technique that provides a more effective comparison 
between presentation attack techniques. We compare the use of 
a deep CNN with the use of a shallow CNN for biometric 
presentation attack detection in still images. We also compare 
the use of a texture-based method versus machine-learning 
methods and the effectiveness of transfer learning versus normal 
training. We demonstrate a modified Spoofnet architecture that 
can effectively distinguish between presentation attacks and real 
users and can classify presentation attacks by type under certain 
conditions. Finally, we discuss whether a machine learning-
based approach or a texture-based approach is most effective, 
and the relative strengths and weaknesses of each. 

For future work, we would like to enhance our CNN code to 
function more like Inception-v3. These enhancements would 
include loading data in batches (to make it possible to load all 
images in the CASIA datasets), loading input images of different 
sizes, and using the same proportions of training, testing, and 
validation data as Inception-v3. We would also like to 
implement some form of data augmentation and multi-class 
ROC curves. 
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